ISO/ASTM TR 52912:2020 (E)

Additive manufacturing — Design — Functionally graded additive manufacturing

Contents

Foreword

Introduction

- 1 Scope
- 2 Normative references
- 3 Terms and definitions
- 4 Abreviations
- 5 Concept of Functionally Graded Additive Manufacturing (FGAM)
 - 5.1 General
 - 5.2 Homogeneous compositions Single Material FGAM
 - 5.3 Heterogeneous compositions Multi-material FGAM
- 6 Advances of functionally graded additive manufacturing
 - 6.1 General
 - 6.2 AM and FGAM process
 - 6.3 Material extrusion
 - 6.4 Powder bed fusion
 - 6.5 Directed energy deposition
 - 6.6 Sheet lamination
- 7 Current limitations of FGAM
 - 7.1 General
 - 7.2 Material limitations
 - 7.2.1 General
 - 7.2.2 Defining the optimum material property distribution
 - 7.2.3 Predicting the material properties of manufactured components
 - 7.2.4 Material selection
 - 7.2.5 Understanding differences and defining tolerances
 - 7.3 Limitations of current additive manufacturing technologies
 - 7.4 CAD Software limitations
 - 7.4.1 General
 - 7.4.2 Data exchange formats
- 8 Potential applications of FGAM
 - 8.1 General
 - 8.2 Biomedical applications
 - 8.3 Aerospace applications
 - 8.4 Consumer markets
- 9 Summary

Page count: 27